Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
J Perinatol ; 44(4): 532-538, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38326606

RESUMO

INTRODUCTION: There is an extensive body of research regarding neurological outcomes following neonatal hypoxic-ischemic encephalopathy (HIE) treated with therapeutic hypothermia (TH), with limited data on growth outcomes. We examined perinatal characteristics associated with postnatal growth in this population. METHODS: Convenience cohort of 66 infants with HIE who underwent TH and participated in follow-up at 24 months of age were included. Regression modeling including perinatal anthropomorphics, markers of HIE, and systemic injury was used to evaluate growth at 24 months. RESULTS: Birth head circumference was associated with weight (p = 0.036). MRI severity, pH at admission and birth head circumference were associated with height (p = 0.043, p = 0.015 and p = 0.043 respectively). MRI severity and length of intubation were associated with head circumference (p = 0.038 and p < 0.001 respectively). CONCLUSION: There was a significant association between specific early factors and growth at 24 months among infants with HIE treated with TH.


Assuntos
Hipotermia Induzida , Hipotermia , Hipóxia-Isquemia Encefálica , Recém-Nascido , Lactente , Gravidez , Feminino , Humanos , Pré-Escolar , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/complicações , Hipotermia/complicações , Cefalometria
2.
Animals (Basel) ; 14(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38338147

RESUMO

The bighorn sheep in Mexico is classified as at-risk by the Mexican federal government. In the state of Baja California, wild sheep can be observed throughout the length of the state from the USA-Mexico border south to the Agua de Soda mountain range. This research aimed to document the historical trend of the bighorn population based on aerial surveys conducted in 1992, 1995, 1999, 2010, and 2021, and the abundance, distribution, and structure of bighorn sheep populations in Baja California, based on an aerial survey conducted from 8-14 November 2021, covering thirteen mountain ranges. The estimated sheep population in 2021 was based on the number of individuals observed; the sightability of the animals; the area sampled; and the total area of habitat available. In 30.5 flight hours, 456 bighorn sheep were observed, with an estimated population of 1697 ± 80 individuals. The observation rate was 16 sheep sighted per hour of flight, and the ram:ewe:lamb ratio was 62:100:19. When the results of the 2021 flight were compared to the results of the previous aerial surveys, there was a large variation between the data, which was related to the lack of consistency between the sampling designs used in each study. Nevertheless, a statistical test of the results of aerial surveys conducted in the state suggest that the Baja California bighorn sheep population remained stable between 1992 and 2021. This study highlights the need to standardize wild sheep aerial surveys by defining flight paths and establishing a consistent duration of flights. On the other hand, Baja California authorities should consider modifying the current conservation strategy for bighorn sheep to increase the species' population in the state by initiating community-based wildlife conservation programs in rural communities.

3.
Dev Neurosci ; 46(1): 55-68, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37231858

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of acquired neonatal brain injury with the risk of developing serious neurological sequelae and death. An accurate and robust prediction of short- and long-term outcomes may provide clinicians and families with fundamental evidence for their decision-making, the design of treatment strategies, and the discussion of developmental intervention plans after discharge. Diffusion tensor imaging (DTI) is one of the most powerful neuroimaging tools with which to predict the prognosis of neonatal HIE by providing microscopic features that cannot be assessed by conventional magnetic resonance imaging (MRI). DTI provides various scalar measures that represent the properties of the tissue, such as fractional anisotropy (FA) and mean diffusivity (MD). Since the characteristics of the diffusion of water molecules represented by these measures are affected by the microscopic cellular and extracellular environment, such as the orientation of structural components and cell density, they are often used to study the normal developmental trajectory of the brain and as indicators of various tissue damage, including HIE-related pathologies, such as cytotoxic edema, vascular edema, inflammation, cell death, and Wallerian degeneration. Previous studies have demonstrated widespread alteration in DTI measurements in severe cases of HIE and more localized changes in neonates with mild-to-moderate HIE. In an attempt to establish cutoff values to predict the occurrence of neurological sequelae, MD and FA measurements in the corpus callosum, thalamus, basal ganglia, corticospinal tract, and frontal white matter have proven to have an excellent ability to predict severe neurological outcomes. In addition, a recent study has suggested that a data-driven, unbiased approach using machine learning techniques on features obtained from whole-brain image quantification may accurately predict the prognosis of HIE, including for mild-to-moderate cases. Further efforts are needed to overcome current challenges, such as MRI infrastructure, diffusion modeling methods, and data harmonization for clinical application. In addition, external validation of predictive models is essential for clinical application of DTI to prognostication.


Assuntos
Imagem de Tensor de Difusão , Hipóxia-Isquemia Encefálica , Recém-Nascido , Humanos , Imagem de Tensor de Difusão/métodos , Prognóstico , Hipóxia-Isquemia Encefálica/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Edema/complicações , Edema/patologia
7.
Dev Neurosci ; : 1-9, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37467736

RESUMO

Quantitative analysis of electroencephalography (qEEG) is a potential source of biomarkers for neonatal encephalopathy (NE). However, prior studies using qEEG in NE were limited in their generalizability due to individualized techniques for calculating qEEG features or labor-intensive pre-selection of EEG data. We piloted a fully automated method using commercially available software to calculate the suppression ratio (SR), absolute delta power, and relative delta, theta, alpha, and beta power from EEG of neonates undergoing 72 h of therapeutic hypothermia (TH) for NE between April 20, 2018, and November 4, 2019. We investigated the association of qEEG with degree of encephalopathy (modified Sarnat score), severity of neuroimaging abnormalities following TH (National Institutes of Child Health and Development Neonatal Research Network [NICHD-NRN] score), and presence of seizures. Thirty out of 38 patients met inclusion criteria. A more severe modified Sarnat score was associated with higher SR during all phases of TH, lower absolute delta power during all phases except rewarming, and lower relative delta power during the last 24 h of TH. In 21 patients with neuroimaging data, a worse NICHD-NRN score was associated with higher SR, lower absolute delta power, and higher relative beta power during all phases. QEEG features were not significantly associated with the presence of seizures after correction for multiple comparisons. Our results are consistent with those of prior studies using qEEG in NE and support automated qEEG analysis as an accessible, generalizable method for generating biomarkers of NE and response to TH. Additionally, we found evidence of an immature relative frequency composition in neonates with more severe brain injury, suggesting that automated qEEG analysis may have a use in the assessment of brain maturity.

8.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333301

RESUMO

Organisms have homeostatic mechanisms to respond to cold temperature to ensure survival including the activation of the mammalian neuroprotective mild hypothermia response (MHR) at 32°C. We show activation of the MHR at euthermia by an FDA-approved medication Entacapone, proof-of-principle that the MHR can be medically manipulated. Utilizing a forward CRISPR-Cas9 mutagenesis screen, we identify the histone lysine methyltransferase SMYD5 as an epigenetic gatekeeper of the MHR. SMYD5 represses the key MHR gene SP1 at euthermia but not at 32°C. This repression is mirrored by temperature-dependent levels of H3K36me3 at the SP1-locus and globally indicating that the mammalian MHR is regulated at the level of histone modifications. We identified 45 additional SMYD5-temperature dependent genes suggesting a broader MHR-related role for SMYD5. Our study provides an example of how the epigenetic machinery integrates environmental cues into the genetic circuitry of mammalian cells and suggests novel therapeutic avenues for neuroprotection after catastrophic events.

9.
Pediatr Res ; 94(6): 1958-1965, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37340101

RESUMO

BACKGROUND: Extremely low birth weight (ELBW) infants comprise a fragile population at risk for neurodevelopmental disabilities (NDD). Systemic steroids were previously associated with NDD, but more recent studies suggest hydrocortisone (HCT) may improve survival without increasing NDD. However, the effects of HCT on head growth adjusted for illness severity during NICU hospitalization are unknown. Thus, we hypothesize that HCT will protect head growth, accounting for illness severity using a modified neonatal Sequential Organ Failure Assessment (M-nSOFA) score. METHODS: We conducted a retrospective study that included infants born at 23-29 weeks gestational age (GA) and < 1000 g. Our study included 73 infants, 41% of whom received HCT. RESULTS: We found negative correlations between growth parameters and age, similar between HCT and control patients. HCT-exposed infants had lower GA but similar normalized birth weights; HCT-exposed infants also had higher illness severity and longer lengths of hospital stay. We found an interaction between HCT exposure and illness severity on head growth, such that infants exposed to HCT had better head growth compared to those not exposed to HCT when adjusted for illness severity. CONCLUSION: These findings emphasize the importance of considering patient illness severity and suggest that HCT use may offer additional benefits not previously considered. IMPACT: This is the first study to assess the relationship between head growth and illness severity in extremely preterm infants with extremely low birth weights during their initial NICU hospitalization. Infants exposed to hydrocortisone (HCT) were overall more ill than those not exposed, yet HCT exposed infants had better preserved head growth relative to illness severity. Better understanding of the effects of HCT exposure on this vulnerable population will help guide more informed decisions on the relative risks and benefits for HCT use.


Assuntos
Hidrocortisona , Recém-Nascido de Peso Extremamente Baixo ao Nascer , Humanos , Recém-Nascido , Lactente , Hidrocortisona/uso terapêutico , Estudos Retrospectivos , Recém-Nascido Prematuro , Gravidade do Paciente
10.
Dev Neurosci ; 45(5): 234-254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37019088

RESUMO

Intrauterine growth restriction (IUGR) resulting from hypertensive disease of pregnancy (HDP) leads to sexually dimorphic hippocampal-dependent cognitive and memory impairment in humans. In our translationally relevant mouse model of IUGR incited by HDP, we have previously shown that the synaptic development in the dorsal hippocampus including GABAergic development, NPTX2+ excitatory synaptic formation, axonal myelination, and perineural net (PNN) formation were perturbed by IUGR at adolescent equivalence in humans (P40). The persistence of these disturbances through early adulthood and the potential upstream mechanisms are currently unknown. Thus, we hypothesized that NPTX2+ expression, PNN formation, axonal myelination, all events closing synaptic development in the hippocampus, will be persistently perturbed, particularly affecting IUGR female mice through P60 given the fact that they had worse short-term recognition memory in this model. We additionally hypothesized that such sexual dimorphism is linked to persistent glial dysregulation. We induced IUGR by a micro-osmotic pump infusion of a potent vasoconstrictor U-46619, a thromboxane A2-analog, in the last week of the C57BL/6 mouse gestation to precipitate HDP. Sham-operated mice were used as controls. At P60, we assessed hippocampal and hemispheric volumes, NPTX2 expression, PNN formation, as well as myelin basic protein (MBP), Olig2, APC/CC1, and M-NF expression. We also evaluated P60 astrocytic (GFAP) reactivity and microglial (Iba1 and TMEM119) activation using immunofluorescent-immunohistochemistry and Imaris morphological analysis plus cytokine profiling using Meso Scale Discovery platform. IUGR offspring continued to have smaller hippocampal volumes at P60 not related to changes in hemisphere volume. NPTX2+ puncta counts and volumes were decreased in IUGR hippocampal CA subregions of female mice compared to sex-matched shams. Intriguingly, NPTX2+ counts and volumes were concurrently increased in the dentate gyrus (DG) subregion. PNN volumes were smaller in CA1 and CA3 of IUGR female mice along with PNN intensity in CA3 but they had larger volumes in the CA3 of IUGR male mice. The myelinated axon (MBP+) areas, volumes, and lengths were all decreased in the CA1 of IUGR female mice compared to sex-matched shams, which correlated with a decrease in Olig2 nuclear expression. No decrease in the number of APC/CC1+ mature oligodendrocytes was identified. We noted an increase in M-NF expression in the mossy fibers connecting DG to CA3 only in IUGR female mice. Reactive astrocytes denoted by GFAP areas, volumes, lengths, and numbers of branching were increased in IUGR female CA1 but not in IUGR male CA3 compared to sex-matched shams. Lastly, activated microglia were only detected in IUGR female CA1 and CA3 subregions. We detected no difference in the cytokine profile between sham and IUGR adult mice of either sex. Collectively, our data support a sexually dimorphic impaired closure of postnatal critical period of synaptic plasticity in the hippocampus of young adult IUGR mice with greater effects on females. A potential mechanism supporting such dimorphism may include oligodendrocyte dysfunction in IUGR females limiting myelination, allowing axonal overgrowth followed by a reactive glial-mediated synaptic pruning.

11.
PLoS One ; 18(4): e0284593, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37079610

RESUMO

Understanding key ecological adaptations, such as foraging, when a predator is almost extinct is complex. Nonetheless, that information is vital for the recovery of the persisting individuals. Therefore, reviewing historical, ethnobiological and recent records can assist in exploring the species behavioral ecology. We applied this approach to Asiatic cheetahs (Acinonyx jubatus venaticus), which once roamed most west and central Asian countries but now is confined to a few dozens in Iran, at historical (pre-1970) and recent (post-1970) scales. We addressed a widely popular perception that Asiatic cheetahs were subjected to prey shifts from gazelles (Gazella spp.) in open plains areas to urial (Ovis vignei) in mountains because of gazelle populations declines due to anthropogenic influences. We also quantified recent prey choice of Asiatic cheetahs and their behavioral plasticity in foraging different prey species types. Although ethnobiological and historical records suggested that gazelle species were the main prey for cheetahs across their Asian range. However, urial were also commonly reported to be hunted by cheetahs across their historical Asian range, showing that the predation on mountain ungulates is not an emerging hunting behavior in Asiatic cheetahs. We found spatiotemporal plasticity in recent hunting behavior of cheetahs with selective predation on adult urial males. There was temporal overlap in hunting times for plains dwelling versus mountain ungulates, albeit with some minor differences with morning mostly for gazelles while the predation on mountain ungulates was predominantly post-midday. We provided three management implications for the recovery and restoration of cheetahs in Asia. Our work highlighted the importance of historical studies in informing the behavioral ecology of rare species.


Assuntos
Acinonyx , Antílopes , Masculino , Animais , Ovinos , Irã (Geográfico) , Ásia , Comportamento Predatório
12.
Life (Basel) ; 13(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37109428

RESUMO

Microglia morphological studies have been limited to the process of reviewing the most common characteristics of a group of cells to conclude the likelihood of a "pathological" milieu. We have developed an Imaris-software-based analytical pipeline to address selection and operator biases, enabling use of highly reproducible machine-learning algorithms to quantify at single-cell resolution differences between groups. We hypothesized that this analytical pipeline improved our ability to detect subtle yet important differences between groups. Thus, we studied the temporal changes in Iba1+ microglia-like cell (MCL) populations in the CA1 between P10-P11 and P18-P19 in response to intrauterine growth restriction (IUGR) at E12.5 in mice, chorioamnionitis (chorio) at E18 in rats and neonatal hypoxia-ischemia (HI) at P10 in mice. Sholl and convex hull analyses differentiate stages of maturation of Iba1+ MLCs. At P10-P11, IUGR or HI MLCs were more prominently 'ameboid', while chorio MLCs were hyper-ramified compared to sham. At P18-P19, HI MLCs remained persistently 'ameboid' to 'transitional'. Thus, we conclude that this unbiased analytical pipeline, which can be adjusted to other brain cells (i.e., astrocytes), improves sensitivity to detect previously elusive morphological changes known to promote specific inflammatory milieu and lead to worse outcomes and therapeutic responses.

13.
Pediatr Res ; 93(7): 1943-1954, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34923579

RESUMO

BACKGROUND: To determine the association of gestational age (GA) and day of life (DOL) with the circulating serum concentration of six brain injury-associated biomarkers in non-brain injured neonates born between 23 and 41 weeks' GA. METHODS: In a multicenter prospective observational cohort study, serum CNS-insult, inflammatory and trophic proteins concentrations were measured daily in the first 7 DOL. RESULTS: Overall, 3232 serum samples were analyzed from 745 enrollees, median GA 32.3 weeks. BDNF increased 3.7% and IL-8 increased 8.9% each week of gestation. VEGF, IL-6, and IL-10 showed no relationship with GA. VEGF increased 10.8% and IL-8 18.9%, each DOL. IL-6 decreased by 15.8% each DOL. IL-10 decreased by 81.4% each DOL for DOL 0-3. BDNF did not change with DOL. Only 49.67% of samples had detectable GFAP and 33.15% had detectable NRGN. The odds of having detectable GFAP and NRGN increased by 53% and 11%, respectively, each week after 36 weeks' GA. The odds of having detectable GFAP and NRGN decreased by 15% and 8%, respectively, each DOL. CONCLUSIONS: BDNF and IL-8 serum concentrations vary with GA. VEGF and interleukin concentrations are dynamic in the first week of life, suggesting circulating levels should be adjusted for GA and DOL for clinically relevant assessment of brain injury. IMPACT: Normative data of six brain injury-related biomarkers is being proposed. When interpreting serum concentrations of brain injury biomarkers, it is key to adjust for gestational age at birth and day of life during the first week to correctly assess for clinical brain injury in neonates. Variation in levels of some biomarkers may be related to gestational and postnatal age and not necessarily pathology.


Assuntos
Lesões Encefálicas , Interleucina-10 , Recém-Nascido , Humanos , Interleucina-6 , Estudos Prospectivos , Fator Neurotrófico Derivado do Encéfalo , Interleucina-8 , Fator A de Crescimento do Endotélio Vascular , Idade Gestacional , Biomarcadores , Lesões Encefálicas/diagnóstico
15.
Front Neurosci ; 16: 931360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983227

RESUMO

Hypoxic-ischemic encephalopathy (HIE) is the most common cause of neonatal acquired brain injury. Although conventional MRI may predict neurodevelopmental outcomes, accurate prognostication remains difficult. As diffusion tensor imaging (DTI) may provide an additional diagnostic and prognostic value over conventional MRI, we aimed to develop a composite DTI (cDTI) score to relate to short-term neurological function. Sixty prospective neonates treated with therapeutic hypothermia (TH) for HIE were evaluated with DTI, with a voxel size of 1 × 1 × 2 mm. Fractional anisotropy (FA) and mean diffusivity (MD) from 100 neuroanatomical regions (FA/MD *100 = 200 DTI parameters in total) were quantified using an atlas-based image parcellation technique. A least absolute shrinkage and selection operator (LASSO) regression was applied to the DTI parameters to generate the cDTI score. Time to full oral nutrition [short-term oral feeding (STO) score] was used as a measure of short-term neurological function and was correlated with extracted DTI features. Seventeen DTI parameters were selected with LASSO and built into the final unbiased regression model. The selected factors included FA or MD values of the limbic structures, the corticospinal tract, and the frontotemporal cortices. While the cDTI score strongly correlated with the STO score (rho = 0.83, p = 2.8 × 10-16), it only weakly correlated with the Sarnat score (rho = 0.27, p = 0.035) and moderately with the NICHD-NRN neuroimaging score (rho = 0.43, p = 6.6 × 10-04). In contrast to the cDTI score, the NICHD-NRN score only moderately correlated with the STO score (rho = 0.37, p = 0.0037). Using a mixed-model analysis, interleukin-10 at admission to the NICU (p = 1.5 × 10-13) and tau protein at the end of TH/rewarming (p = 0.036) and after rewarming (p = 0.0015) were significantly associated with higher cDTI scores, suggesting that high cDTI scores were related to the intensity of the early inflammatory response and the severity of neuronal impairment after TH. In conclusion, a data-driven unbiased approach was applied to identify anatomical structures associated with some aspects of neurological function of HIE neonates after cooling and to build a cDTI score, which was correlated with the severity of short-term neurological functions.

16.
J Pediatr ; 246: 34-39.e3, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35460699

RESUMO

OBJECTIVE: To measure plasma levels of vascular endothelial growth factor (VEGF) and several cytokines (Interleukin [IL]-6 IL-8, IL-10) during the first week of life to examine the relationship between protein expression and likelihood of developing respiratory distress syndrome (RDS) and bronchopulmonary dysplasia (BPD). STUDY DESIGN: Levels of IL-6, IL-8, IL-10, and VEGF were measured from plasma obtained from preterm patients during the first week of life. Newborns were recruited from a single center between April 2009 and April 2019. Criteria for the study included being inborn, birth weight of less than 1500 grams, and a gestational age of less than 32 weeks at birth. RESULTS: The development of RDS in preterm newborns was associated with lower levels of VEGF during the first week of life. Higher plasma levels of IL-6 and IL-8 plasma were associated with an increased likelihood and increased severity of BPD at 36 weeks postmenstrual age. In contrast, plasma levels of VEGF, IL-6, IL-8, and IL-10 obtained during the first week of life were not associated with respiratory symptoms and acute care use in young children with BPD in the outpatient setting. CONCLUSIONS: During the first week of life, lower plasma levels of VEGF was associated with the diagnosis of RDS in preterm infants. Preterm infants with higher levels of IL-6 and IL-8 during the first week of life were also more likely to be diagnosed with BPD. These biomarkers may help to predict respiratory morbidities in preterm newborns during their initial hospitalization.


Assuntos
Displasia Broncopulmonar , Síndrome do Desconforto Respiratório do Recém-Nascido , Biomarcadores/sangue , Displasia Broncopulmonar/diagnóstico , Citocinas/sangue , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Interleucina-10 , Interleucina-6 , Interleucina-8 , Gravidez , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Fator A de Crescimento do Endotélio Vascular/sangue
17.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613949

RESUMO

Neonatal hypoxic-ischemic (HI) injury leads to deficits in hippocampal parvalbumin (PV)+ interneurons (INs) and working memory. Therapeutic hypothermia (TH) does not prevent these deficits. ErbB4 supports maturation and maintenance of PV+ IN. Thus, we hypothesized that neonatal HI leads to persistent deficits in PV+ INs, working memory and synaptic plasticity associated with ErbB4 dysregulation despite TH. P10 HI-injured mice were randomized to normothermia (NT, 36 °C) or TH (31 °C) for 4 h and compared to sham. Hippocampi were studied for α-fodrin, glial fibrillary acidic protein (GFAP), and neuroregulin (Nrg) 1 levels; erb-b2 receptor tyrosine kinase 4 (ErbB4)/ Ak strain transforming (Akt) activation; and PV, synaptotagmin (Syt) 2, vesicular-glutamate transporter (VGlut) 2, Nrg1, and ErbB4 expression in coronal sections. Extracellular field potentials and behavioral testing were performed. At P40, deficits in PV+ INs correlated with impaired memory and coincided with blunted long-term depression (LTD), heightened long-term potentiation (LTP) and increased Vglut2/Syt2 ratio, supporting excitatory-inhibitory (E/I) imbalance. Hippocampal Nrg1 levels were increased in the hippocampus 24 h after neonatal HI, delaying the decline documented in shams. Paradoxically ErbB4 activation decreased 24 h and again 30 days after HI. Neonatal HI leads to persistent deficits in hippocampal PV+ INs, memory, and synaptic plasticity. While acute decreased ErbB4 activation supports impaired maturation and survival after HI, late deficit reemergence may impair PV+ INs maintenance after HI.


Assuntos
Memória de Curto Prazo , Parvalbuminas , Receptor ErbB-4 , Animais , Camundongos , Hipocampo/metabolismo , Hipóxia/metabolismo , Interneurônios/metabolismo , Isquemia/metabolismo , Memória de Curto Prazo/fisiologia , Neuregulina-1/metabolismo , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Receptor ErbB-4/metabolismo , Transdução de Sinais/fisiologia
18.
Dev Neurosci ; 44(4-5): 214-232, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34933306

RESUMO

INTRODUCTION: Intrauterine growth restriction (IUGR) from hypertensive disease of pregnancy complicates up to 10% of all pregnancies. Significant hippocampal-dependent cognitive and memory impairments as well as neuropsychiatric disorders have been linked to IUGR. Because disturbance of the hippocampal critical period (CPd) of synaptic plasticity leads to impairments similar to those described in IUGR human offspring, we hypothesized that IUGR would perturb the CPd of synaptic plasticity in the mouse hippocampus in our model. METHODS: IUGR was produced by a micro-osmotic pump infusion of the potent vasoconstrictor U-46619, a thromboxane A2-agonist, at embryonic day 12.5 in C57BL/6J mouse dams to precipitate hypertensive disease of pregnancy and IUGR. Sham-operated mice acted as controls. At P10, P18, and P40, we assessed astrogliosis using GFAP-IHC. In dorsal CA1 and CA3 subfields, we assessed the immunoreactivities (IR) (IF-IHC) to (i) parvalbumin (PV) and glutamate decarboxylase (GAD) 65/67, involved in CPd onset; (ii) PSA-NCAM that antagonizes CPd onset; (iii) NPTX2, necessary for excitatory synapse formation and engagement of CPd; and (iv) MBP and WFA, staining perineural nets (PNNs), marking CPd closure. ImageJ/Fiji and IMARIS were used for image processing and SPSS v24 for statistical analysis. RESULTS: Although PV+ interneuron numbers and IR intensity were unchanged, development of GAD65/67+ synaptic boutons was accelerated at P18 IUGR mice and inversely correlated with decreased expression of PSA-NCAM in the CA of P18 IUGR mice at P18. NPTX2+ puncta and total volume were persistently decreased in the CA3 pyramidal and radiatum layers of IUGR mice from P18 to P40. At P40, axonal myelination (MBP+) in CA3 of IUGR mice was decreased and correlated with NPTX2 deficits. Lastly, the volume and integrity of the PNNs in the dorsal CA was disrupted in IUGR mice at P40. DISCUSSION/CONCLUSION: IUGR disrupts the molecular and structural initiation, consolidation, and closure of the CPd of synaptic plasticity in the mouse hippocampus in our model, which may explain the learning and memory deficits observed in juvenile IUGR mice and the cognitive disorders seen in human IUGR offspring. The mechanistic links warrant further investigation, to identify therapeutic targets to prevent neurodevelopmental deficits in patients affected by IUGR.


Assuntos
Retardo do Crescimento Fetal , Hipertensão , Animais , Feminino , Hipocampo/metabolismo , Humanos , Hipertensão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Gravidez
20.
J Comp Neurol ; 530(8): 1148-1163, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34687459

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) causes lifelong neurologic disability. Despite the use of therapeutic hypothermia, memory deficits and executive functions remain severely affected. Cholinergic neurotransmission from the basal forebrain to neocortex and hippocampus is central to higher cortical functions. We examined the basal forebrain by light microscopy and reported loss of choline acetyltransferase-positive (ChAT)+ neurons, at postnatal day (P) 40, in the ipsilateral medial septal nucleus (MSN) after neonatal hypoxia-ischemia (HI) in mice. There was no loss of ChAT+ neurons in the ipsilateral nucleus basalis of Meynert (nbM) and striatum. Ipsilateral striatal and nbM ChAT+ neurons were abnormal with altered immunoreactivity for ChAT, shrunken and crenated somas, and dysmorphic appearing dendrites. Using confocal images with 3D reconstruction, nbM ChAT+ dendrites in HI mice were shorter than sham (p = .0001). Loss of ChAT+ neurons in the MSN directly correlated with loss of ipsilateral hippocampal area. In the nbM and striatum, percentage of abnormal ChAT+ neurons correlated with loss of ipsilateral cerebral cortical and striatal area, respectively. Acetylcholinesterase (AChE) activity increased in adjacent ipsilateral cerebral cortex and hippocampus and the increase was linearly related to loss of cortical and hippocampal area. Numbers and size of cathepsin D+ lysosomes increased in large neurons in the ipsilateral nbM. After neonatal HI, abnormalities were found throughout the major cholinergic systems in relationship to amount of forebrain area loss. There was also an upregulation of cathepsin D+ particles within the nbM. Cholinergic neuropathology may underlie the permanent dysfunction in learning, memory, and executive function after neonatal brain injury.


Assuntos
Prosencéfalo Basal , Acetilcolinesterase/metabolismo , Animais , Prosencéfalo Basal/metabolismo , Colina O-Acetiltransferase/metabolismo , Colinérgicos , Fibras Colinérgicas/metabolismo , Hipóxia , Isquemia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...